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Abstract. Conditions of local and global thermodynamic stability of spatially-periodic mesophases formed
in an incompressible melt of binary monodisperse copolymers with molecules of arbitrary chemical structure
are theoretically scrutinized. For the first time a bifurcation analysis of the Landau free energy in the first
harmonic approximation is carried out. Based upon this analysis, feasible scenarios of bifurcation and phase
transitions between mesophases of different morphology are discussed. The description of thermodynamic
behavior of some systems is presented to exemplify the implementation of the approach proposed.

PACS. 02.30.Oz Bifurcation theory – 64.10.+h General theory of equations of state and phase equilibria
– 82.35.Jk Copolymers, phase transitions, structure

1 Introduction

The distinctive feature of heteropolymer liquids is the
formation in such systems of thermodynamically equi-
librium superstructures with nanoscale spatially periodic
distributions of densities of different type monomeric
units. The most experimentally studied here are melts
of monodisperse diblock and triblock copolymers showing
the rich phase behavior [1–3]. The existence of the clas-
sical mesophases such as Lamellar, Hexagonal and Body-
Centered Cubic (BCC) has been revealed for the first time
by Leibler [4] who invoked the Landau theory of phase
transitions to describe an incompressible melt of monodis-
perse binary diblock copolymer. The region of this mean-
field theory applicability is confined to the vicinity of the
critical point where the value of the order parameter is
small enough. Under such a weak segregation limit (WSL)
regime macromolecules demonstrate the Gaussian confor-
mation, and the composition profile of ordered mesophases
is approximately sinusoidal.

In the wake of Leibler’s pioneer work [4] a consider-
able number of papers have been published in which the
WSL theory has been used for the construction of phase
diagram of a variety of block copolymers differing in archi-
tecture and composition (see, for instance, [1–3,5–8] and
references therein). In the framework of this theory each
boundary separating the regions of the existence of any
two mesophases in the phase diagram is traditionally de-
termined from the condition of the equality of their free
energy values. However, such a procedure is evidently cor-
rect only provided the mesophases of interest are thermo-
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dynamically stable with respect to any small fluctuations
of the densities of monomeric units.

When constructing phase diagrams of a polymer liquid
in the framework of the Landau theory of phase transi-
tions, it is common practice to focus the attention on the
analysis of the minimal stability of the superstructures,
i.e. the stability with respect to the perturbations by the
plane waves of identical small amplitude, directed along
the wave vectors constituting the harmonic set of the su-
perstructure of interest. In this paper we will formulate
more strong necessary conditions of the mesophases’ local
stability by considering perturbing plane waves whose am-
plitudes may be different and the wave vectors be aligned
along the edges of a regular tetrahedron. This choice of the
orientation of the wave vectors of perturbations is due to
the fact that in the first harmonic approximation the most
frequently examined superstructures (such as Lamellar,
Hexagonal and BCC) can be constructed just on this set
of wave vectors.

Apart from revealing the conditions of the loss of lo-
cal thermodynamic stability by some spatially-periodic
mesophase, it is of considerable significance to elucidate to
which of mesophases the unstable system goes. In this pa-
per we will address the cases when the loss of the local sta-
bility by one of the mesophases in hand happens with re-
spect to the perturbations with wave vectors aligned along
the edges of Face-Centered Cubic (FCC) lattice which is
reciprocal with respect to the BCC lattice.

For the thermodynamics of polymer liquids, as distinct
from low-molecular weight ones, metastable states are of
prime significance. The reason is an extremely large vis-
cosity of such liquids conducive to the fact that the life
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time of the metastable mesophases can become compara-
ble with the performance time of polymer materials. As a
consequence, the solution of several theoretical problems
acquires primary actuality. Among them are revealing the
complete set of local minima of the free energy, establish-
ing the boundaries of their local stability as well as finding
the heights of the energetic barriers separating these min-
ima.

The solution of two first problems implies finding all
extremals of the amplitude expansion of the Landau free
energy and choosing among them those, in which all eigen-
values of the matrix of its second derivatives are posi-
tive. To solve the third problem such a linear analysis of
the stability of extremals should be supplemented with
an additional nonlinear bifurcation analysis. As a result,
the height of potential barrier between two local minima,
which is equal to the value of the function of the Landau
free energy in the transition state separating these two
minima, can be found. In the present paper we restricted
this analysis in the framework of the WSL theory to the
fourth order terms of the Landau free energy expansion.

Earlier, approaching problems of such a kind, Qi and
Wang [9,10] made use of the kinetic treatment. Its key
idea consists in the investigation of kinetic pathways along
which a system starting from some non-equilibrium state
evolves at fixed temperature to the equilibrium. The initial
spatial distribution of the order parameter is believed to
have the symmetry of a certain mesophase. The evolution
of a system to the equilibrium is described by the authors
in terms of the time-dependent Ginzburg-Landau (TDGL)
theory. They examined kinetic pathways between LAM,
HEX and BCC mesophases of a diblock copolymer melt
regarding the order parameter to be conservable as well
as neglecting the angular dependence of the vertex func-
tions of the Landau free energy expansion. Upon numer-
ical simulations of TDGL equations by the cell-dynamics
method, the authors [9,10] came to the following conclu-
sion. A transient state in the above-mentioned pathway is
present in case of metastability of the initial mesophase
and absent when this is absolutely unstable. Along with
the direct solution of TDGL partial differential equation,
Qi and Wang [10] wrote down and computed the set of or-
dinary differential equations for the amplitudes of the first
harmonics of the order parameter. However, they assumed
some of these amplitudes to be interdependent, that im-
poses certain restrictions on the choice of pathways leading
to the equilibrium devaluating to some extent the results
achieved.

This drawback was rectified by Ohta and co-
workers [11–13]. They exploring the kinetics of structural
transitions in diblock copolymers refined the approach
proposed by Qi and Wang [9,10] by regarding the ampli-
tudes of all harmonics to be independent. Moreover, they
did not confine the consideration to the first-harmonic
approximation [11] having added the equations for the
amplitudes of the second harmonics [12,13]. It should be
stressed, that to construct the phase diagram of an in-
compressible melt of diblock copolymers, the authors of
paper [11] calculated the lines of the loss not only of

global stability but also of local stability of LAM, HEX
and BCC mesophases. The addition of the equations for
the amplitudes of the second harmonics [12,13] enabled
the authors to extend their analysis by covering the gy-
roid mesophase as well. Besides, a considerable number
of stationary points of the amplitude expansion of TDGL
equations were found [13], among which are points corre-
sponding to metastable and transient states.

In paper [14] the kinetic equations have been written
down for the amplitudes of the first harmonics of the or-
der parameter whose spatial distribution corresponds to
the Face-Centered Cubic (FCC) mesophase. The authors
have numerically found and tested for stability the station-
ary points of these equations assuming that only two of
four amplitudes considered are independent. This analysis
brought the authors to the conclusion about the instabil-
ity of FCC mesophase.

In all papers [9–14] the angular dependence of the ver-
tex functions of the Landau free energy expansion was
taken to be absent. This assumption is a fair approxima-
tion under the consideration of the thermodynamic be-
havior of a diblock copolymer melt in the framework of
the WSL theory [15]. However, under an analogous exam-
ination of block copolymers with more complicated archi-
tecture such a dependence was found [16,17] to be highly
essential. Its proper account [16,17] results in the appear-
ance in phase diagrams of regions where Simple Cubic
(SC) and FCC mesophases are stable, whereas the dis-
regard of the angular dependence of the vertex functions
leads to the conclusion about the absence of such stability
regions [14].

The kinetics of phase transitions in melts of block
copolymers is not of our concern in the present paper.
Mathematically speaking, our approach reduces to the
analysis of extreme points of a certain polynomial which is
a phenomenological expression for the amplitude expan-
sion of the Landau free energy of this melt. The number of
phenomenological parameters representing coefficients of
this expansion is controlled by the appearance of the set of
fundamental reciprocal lattice vectors of the mesophase in
hand. In particular, in case under examination, when vec-
tors of this set form the tetrahedron the number of these
coefficients equals four, whereas for the octahedron it is
three. Numerical values of these parameters are governed
by the architecture of block copolymers’ macromolecules
and can be found from a microscopic theory. When the
angular dependence of the vertex functions is absent all
phenomenological parameters discussed above turn out to
be identical. In the present paper these parameters are
assumed to be positive values. Nevertheless, as it will be
shown bellow, important analytic results can be obtained
even under such an assumption. Our analytic approach
supplements numerical consideration [9–14] of the phase
behavior of block copolymers.

It’s worth emphasizing that all problems posed in this
paper can be basically formulated in terms of the equiv-
ariant bifurcation theory [18,19], extensively used un-
der the description of spatial patterns in active media.
Once achieved this, the above-mentioned problems can be
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solved on the basis of the formalism of this theory using
a rigorous mathematical algorithm. Particularly, such an
algorithm has been minutely developed [19] when consid-
ering patterns, whose wave vectors are taken from the set
of wave vectors forming a tetrahedron. However, practical
implementation of this algorithm presents a real challenge
for a physicist since it implies a good command of rather
sophisticated mathematics such as the theory of polyno-
mial equivariants.

The paper is organized as follows. At first, the prob-
lem is stated and the complete set of all extremals of the
Landau free energy is found. The third section is devoted
to the analysis of local stability of the extremals obtained.
The fourth section addresses the states corresponding to
the saddles of the hypersurface of the Landau free en-
ergy that characterize the probability of the transition
from a metastable state to stable one. In the fifth sec-
tion the analysis is undertaken of the global stability of
extremals. Further the algorithm of finding feasible sce-
narios of temperature-induced transitions between all lo-
cally stable states in polymer liquids with given chemical
structure of macromolecules is exemplified by a number
of model systems. The Conclusion section is followed by
three Appendices comprising some mathematical expres-
sions necessary for the derivation of principal theoretical
results presented in the main body of the paper.

2 Extremals of the Landau free energy

The Landau theory of phase transitions [20] is built upon
the expansion of non-equilibrium free energy functional
∆FL[˜Ψ(q)] in a power series of order parameter Ψ(r). Un-
der thermodynamic description of polymer liquids, it is
customary to write down this functional in momentum
representation, omitting the terms whose order is higher
than four [1–8]. The corresponding expression in the case
of an incompressible melt of binary heteropolymer whose
molecules consist of units of A and B type reads

∆F [˜Ψ(q)] ≡ ∆FL[˜Ψ(q)]
TM

=
4

∑

l=2

1
l!

∑

{qi}
˜Γ (l)(q1, ...,ql)δk(q1 + ... + ql)

l
∏

i=1

˜Ψ(qi)

(1)

here T and M stand, respectively, for the absolute tem-
perature expressed in energetic units and overall number
of monomeric units in macromolecules. Function ˜Ψ(q) is
the Fourier transform of the order parameter

Ψ(r)≡ΨA(r) =−ΨB(r), where Ψα(r)≡ [ρα(r)− ρ̄α]/M
(2)

proportional to the difference in density of type α = A, B
units at point r and its average value ρ̄α throughout the
system. In disordered phase Ψ(r) ≡ 0, whereas the value
of the order parameter periodically changes in space when
Ψ(r) describes some mesophase.

The presence of the Kronecker delta symbol δk in for-
mula (1) means that the summation in each its term is
over whole set of l wave vectors adding up to zero. Coef-
ficients Γ̄ (l)(q1 + ... + ql) of expansion (1) referred to as
“vertex functions” are governed by the chemical structure
of macromolecules. Since a general algorithm of finding
this dependence for any linear heteropolymers has been
formulated [8,21], below we will take the vertex functions
as known. Among them the second order one

Γ̄ (2)(q1,q2)δk(q1 + q2) ≡ ˜Γ2(q) = H(q) − 2χ,

where q = |q1| = |q2| (3)

holds a special position since unlike other vertex functions
it is controlled along with the chemical structure of a het-
eropolymer also by temperature due to the dependence of
the Flory parameter χ on T .

In the present paper we will concern ourselves
with monodisperse heteropolymer comprised of identical
macromolecules imposing no constraints on the pattern of
arrangement of A and B monomeric units along copoly-
mer chains. This, being responsible for the appearance of
positive function H(q), does not affect its asymptotic be-
havior at q → 0 and q → ∞ where function H(q) diverges
for the melt of any monodisperse heteropolymer. As a con-
sequence this function is certain to have the minimum at
some value q = q∗ > 0.

The behavior of a heteropolymer liquid under tem-
perature change is easy to follow for copolymers whose
macromolecules are invariant with respect to the inver-
sion of units A and B. The description of the thermody-
namic behavior of such symmetric copolymers in terms
of the Landau theory becomes substantially simplified be-
cause of vanishing of vertex function ˜Γ (3) at all values
of its arguments. In this case the homogeneous state of
a melt remains globally thermodynamically stable over
whole temperature range as long as the Flory parame-
ter χ remains less than its spinodal value χs = H(q∗)/2.
As temperature goes down, parameter χ rises to become
at a certain moment larger than χs. At this moment un-
stable harmonics appear in the system the growth of the
amplitude of which is saturated by terms in expansion
(1) whose order is higher than the second one. Such a
saturation results in the formation of a stable mesophase
with spatially-periodic distribution of the densities ρα(r)
of monomeric units.

In general case, when the symmetry of macromolecules
with respect to the inversion of units A and B is absent,
the phase behavior of a heteropolymer liquid qualitatively
differs from that described in the foregoing. Since vertex
function ˜Γ (3) for asymmetric copolymer is distinct from
zero, the homogeneous state of a system looses global sta-
bility at value of parameter χ = χb smaller than χs. Then,
with lowering temperature, a system undergoes the first
kind phase transition from local stable homogeneous state
into mesophase with certain spatial symmetry. The latter
is characterized by periodic function Ψ(r) (2) which in
the vicinity of the critical point can be approximated by
a sum of n pairs of harmonics. Each kth of these pairs is
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Fig. 1. The first harmonic set of wave vectors
{qi} (i = 1, 2, . . . , 6) of BCC mesophase. The figure at
an edge of the tetrahedron denotes the number of correspond-
ing wave vector.

specified by wave vectors (qk’ −qk) with length q∗ as well
as by amplitude ak and phases (ϕk’ − ϕk) [22]

Ψ(r) =
2
V

n
∑

k=1

ak cos(qkr + ϕk), |qk| = q∗ (4)

˜Ψ(q) =
n

∑

k=1

ak

[

eiϕkδ(q − qk) + e−iϕkδ(q + qk)
]

. (5)

For the sake of convenience of the notation of the subse-
quent formulas we omitted in these expressions factor

√
n,

normally present in them.
In the present work we will be primarily concerned

with the consideration of mesophases whose all wave vec-
tors of the first harmonic sphere {qk} can be aligned along
the edges of the regular tetrahedron (see Fig. 1). Among
such mesophases are Lamellar (n = 1), Hexagonal (n = 3),
BCC (n = 6) and some other. The sets of wave vectors of
the first harmonic sphere of the first two mesophases are,
evidently, subsets of the set of the third mesophase.

Substituting expression (5) into functional (1) yields
the expression for the specific Landau free energy

F =
τ

2

6
∑

i=1

a2
i − 2α [a1a2a3 cos (123) + a1a5a6 cos (156)

+a2a4a6 cos (246̄) + a3a4a5 cos (34̄5̄)] +
γ0

4

6
∑

i=1

a4
i

+ γ1

[

a2
1

(

a2
2 + a2

3 + a2
5 + a2

6

)

+ a2
2

(

a2
3 + a2

4 + a2
6

)

+a2
3

(

a2
4 + a2

5

)

+ a2
4

(

a2
5 + a2

6

)

+ a2
5a

2
6

]

+ γ2

(

a2
1a

2
4 + a2

2a
2
5 + a2

3a
2
6

)

+ 2γ3 [a1a3a4a6 cos (134̄6)

+a1a2a4a5 cos (1245) + a2a3a5a6 cos (235̄6̄)] (6)

considered as a function of amplitudes {ak} and phases
{ϕk} of six pairs of harmonics. Here every sequence of
numbers representing arguments of cosine denotes the
algebraic sum of phases of corresponding plane waves,
whereas a bar over the number means that the cor-
responding phase enters into the sum with negative
sign. So, cos (134̄6) is abridged notation of expression
cos (ϕ1 + ϕ3 − ϕ4 + ϕ6).

Amplitude expansion of the free energy (6) is con-
trolled by six dimensionless parameters τ , α n{γi}(i =
0, 1, 2, 3), which are governed by the chemical structure
of a copolymer macromolecule. These parameters are re-
lated in a simple manner to vertex functions ˜Γ (l) whose
arguments are wave vectors {qk} pertaining to the first
harmonic sphere of BCC mesophase. The lengths of all
these vectors adding up to zero are equal to q∗. This sig-
nals the existence of a single triple of such wave vectors
aligned along the sides of an equilateral triangle as well as
that of four different quadruples of the above-mentioned
wave vectors. Their mutual orientation in the momentum
space was proposed [4] to describe by a set of three angu-
lar variables h1, h2, h3 whose sum is four. Recourse to the
earlier formulated algorithm [21] permits finding function
for Γ (h1, h2, h3) heteropolymer consisting of linear macro-
molecules of arbitrary chemical structure. The knowledge
of this function, enables to calculate the values of param-
eters {γi}. Formulas for the calculation of these and the
other two parameters, τ and α, look as follows

τ = ˜Γ (2)(q1,−q1) = 2(χs − χ)

α = ˜Γ (3)(q1,q2,q3)

γ0 = ˜Γ (4)(q1,−q1,q1,−q1) = Γ (0, 0, 4)

γ1 = ˜Γ (4)(q1,−q1,q2,−q2) = Γ (0, 1, 3),

γ2 = ˜Γ (4)(q1,−q1,q4,−q4) = Γ (0, 2, 2)

γ3 = ˜Γ (4)(q1,q2,q4,q5) = Γ (1, 1, 2), (7)

where wave vector qi is aligned along the ith edge of a
tetrahedron depicted in Figure 1. Numerical factors en-
tering in formula (6) in front of parameters α and {γi}
are, respectively, equal to κ(3)/3! and κ

(4)
i /4! (i = 0, 1, 2, 3)

where κ(3) and κ
(4)
i are combinatoric factors. They equal

the number of the permutations of the arguments of vertex
functions ˜Γ (3) and ˜Γ (4) retaining their values unaltered.

Below taking all coefficients {γi} as being positive, we
will not impose some additional constraints on their val-
ues. This is quite justified since no universal inequalities
comprising these parameters are currently known in a mi-
croscopic theory.

Expression (6) may be given a simple geometric in-
terpretation by turning to the tetrahedron in Figure 1.
So, to each of four the third order terms a contour corre-
sponds situated on one of this tetrahedron faces. Number
of the amplitude in the product corresponds to that of
wave vector in a contour. If a vector is aligned along the
contour, the sign in front of the phase involved in the sum
is positive, otherwise it is negative. An analogous rule is
also valid for the fourth-order terms, each corresponding
to particular contour of length four on the tetrahedron.
Among such contours four their types i = 0, 1, 2, 3 should
be distinguished. The zero-type contour represents the
walk on a single tetrahedron edge passed twice in both
directions. Each contour of type 1 and 2 is the walk on
two edges, adjacent and non-adjacent, of a tetrahedron,
respectively, passed once in both directions. At last, con-
tours of type 3 are non-planar and are the walks aligned
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Table 1. Complete set of all single-amplitude extremals of the Landau free energy.

N◦ Extremal Abbr. (a1a2 . . . a6) Expression for amplitude A Phases
0 Disorder D (000000) − −
1 Lamellar L (A00000)

√−τ/4βL, 4βL = γ0 t1 = 0, t2 = −t3
2 Rhombic R (AA0000)

√−τ/2βR, 2βR = γ0 + 2γ1 cos t123 = 0

3 Square S (A00A00)
√−τ/2βS , 2βS = γ0 + 2γ2 ti = 0, i = 1, 2, 3

4 Hexagonal H (AAA000)
3
∣

∣

∣α
(

1 ± √

1 − τ/τ∗
H

)∣

∣

∣

/

4βH ,

τ∗
H ≡ 3α2/4βH ,

4βH ≡ 3 (γ0 + 4γ1)

cos t123 = 1

5 Rhombo-hedric Rh (000AAA)
√−3τ/4βRh, βRh = βH ti = π/2, i = 1, 2, 3

6 Deformed FCC2 F2 (AA0AA0)

√−τ/βF2,
βF2 = γ0 + 4γ1 + 2γ2 − 2γ3

t1 = t3 = 0,
t2 = π

7 Deformed FCC3 F3 (AA0AA0)

√−τ/βF3,
βF3 = γ0 + 4γ1 + 2γ2 + 2γ3

t1 = t3 = π/2,
t2 = −π/2

8 BCC B (AAAAAA)
3

∣

∣

∣α
(

1 ± √

1 − τ/τ∗
B

)∣

∣

∣/βB ,

τ∗
B ≡ 6α2

/

βB ,
2βB ≡ 3 (γ0 + 8γ1 + 2γ2 + 4γ3)

ti = 0, i = 1, 2, 3

9 BCC2 B2 (AAAAAA)

√−3τ/2βB2,
2βB2 ≡ 3 (γ0 + 8γ1 + 2γ2 − 4γ3)

ti = π/2, i = 1, 2, 3

along four mutually non-collinear edges of the tetrahe-
dron.

As is evident from formula (6), phase factors are
present only in terms describing contours of length three
as well as those contours of length four whose type is 3.
It is easy to show that all arguments of cosines can be ex-
pressed through linear combinations of three independent
quantities

t1 ≡ ϕ1 + ϕ5 + ϕ6,

t2 ≡ ϕ2 + ϕ4 − ϕ6,

t3 ≡ ϕ3 − ϕ4 − ϕ5 (8)

because the following relationships are the case

cos(123) = cos(t1 + t2 + t3) ≡ cos t123,

cos(1245) = cos(t1 + t2) ≡ cos t12,

cos(134̄6) = cos(t1 + t3) ≡ cos t13,

cos(235̄6̄) = cos(t2 + t3) ≡ cos t23. (9)

In order to get the full set of metastable states of the equi-
librium system under examination, it is necessary to find
all local minima of the Landau free energy (6). This im-
plies finding the extremals of function (6) with respect to
six amplitudes a1, ..., a6 and three phase variables t1, t2, t3
as well as subsequent revealing among all such extremals
those which are locally-stable. The system of nine equa-
tions for obtaining, finding the above-mentioned extremals
is written down in Appendix A. Below we will exclusively
deal with the extremals whose all non-vanishing ampli-
tudes {ak} are identical. The complete set of such single-
amplitude extremals is presented in Table 1. Extremals
differing in configuration (a1a2...a6) have been ascribed
the names according to their spatial symmetry in such a
manner as to ensure the coincidence of these names with
those earlier used for corresponding mesophases.

Inspection of Table 1 invites some additional com-
ments of general character. The region of the existence

of every extremal represents a half-line bounded on the
right by point τ = τ∗. For all extremals tabulated here,
but for 4 and 8, value τ∗ = 0. At this point high codi-
mension bifurcation happens resulting in the appearance
of seven pairs of new extremals. Amplitudes of every such
a pair of extremals are the same, whereas all phase vari-
ables (8) differ by π. At points τ∗

H > 0 and τ∗
B > 0 “rigid”

secondary bifurcation occurs leading to the emergence of
two branches of extremals. One of them (to which minus
sign in front of the radical in formula for the amplitude in
Tab. 1 corresponds) is necessarily unstable.

To our knowledge, in all theoretical works where the
thermodynamic behavior of heteropolymer melts of par-
ticular structures was considered in the framework of
WSL, inequality τ∗

H < τ∗
B holds. However, as it follows

from Table 1, a reverse inequality will be true, provided
4βH < βB . Hence, temperature decrease can lead to the
situation when the hexagonal extremal appears before the
BCC one.

Naturally, all extremals presented in Table 1 can be ob-
tained in a trivial way, i.e., by minimization of the Landau
free energy written down in a traditional manner

F = (nτ/2)A2 − αnA3 + βnA4, (10)

where the values of coefficients αn, βn differ for distinct
mesophases. Some of them (up to the factor 1/

√
n3 for αn

and 1/n2 for βn) have been reported earlier. Mesophases
corresponding to Lamellar, Rhombic, Square, Hexagonal,
Rhombohedric and BCC extremals have been theoreti-
cally studied by Leibler [4]. Later BCC2 mesophase has
been also considered [22]. However, as far as we are con-
cerned, Deformed FCC2 and Deformed FCC3 extremals
included in Table 1 have not been addressed so far. Show-
ing the same configuration (AA0AA0), they yet differ
in values of phase variables (8). Assigning the above-
mentioned names to these mesophases, we proceeded from
the fact that the nonplanar contour which comprises
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four wave vectors q1,q2,q4,q5 on the tetrahedron edges
(Fig. 1) corresponding to non-zero amplitudes in the men-
tioned configuration, can be obtained by corresponding
deformation of the contour built up of four non-collinear
vectors of the first harmonic set of FCC mesophase.

Expression (10) is derived immediately from expres-
sion (6), provided values of all non-vanishing amplitudes
in the latter are put identical and equal to A. Essentially,
dealing with expression (10), the only question possible
to answer concerns exclusively the trivial local stability of
extremals with respect to the variations of only one vari-
able which is amplitude A. As for the non-trivial local
stability with respect to arbitrary variations of six ampli-
tudes and three phase variables, this issue under such a
consideration remains open. To investigate this non-trivial
stability, one should find regions of positive definiteness of
the ninth order Hess matrix of the Landau free energy (6)
on extremals from Table 1. This problem is equivalent to
that of finding the region where all nine its eigenvalues are
positive.

3 Analysis of the local stability

Expressions for the Hess matrix of function (4) and its
eigenvalues {λi} are given in Appendix B for each ex-
tremal presented in Table 1. Essentially, the Hess matrix
H on every extremal under examination is block diagonal

H=
(

Ha 0
0 Ht

)

,
Ha

ij ≡ ∂2F/∂ai∂aj (i, j = 1, ..., 6)
Ht

ij ≡ ∂2F/∂ti∂tj (i, j = 1, 2, 3) ,

(10)
where Ht is null matrix on all extremals shown in Table 1
with the exception of B and B2 extremals.

Noteworthy, two extremals from those demonstrated
it Table 1, R and F3, do not correspond to the local min-
ima of the free energy at any values of parameters {γi}.
This is because the spectrum of matrix H (10) necessarily
comprises on these extremals a pair of eigenvalues differ-
ing by sign. The first of the above-mentioned extremals is
trivially stable, that enabled Leibler [4] to consider it as
corresponding to the metastable state.

All eigenvalues of the Hess matrix (10) can be divided
into two groups. The first group incorporates eigenvalues
for which the conditions of the alteration of their sign do
not depend on being exclusively controlled by the relation-
ships between parameters {γi}. All the other eigenvalues
{λi} belong to the second group.

Full set of signs of all eigenvalues pertaining to the first
group prescribes qualitative appearance of the bifurcation
diagram, whereas bifurcation values of parameter τ are ob-
tained from the analysis of the second group eigenvalues.
As it follows from formulas presented in Appendix B, the
condition of the sign alteration by the first group eigenval-
ues coincides with the condition of vanishing of the certain
linear combination of four parameters {γi}. Therefore, the
set of signs of all these {λi} is actually governed by values
of only three parameters. As such parameters the following
bi ≡ γi/γ0 (i = 1, 2, 3) may be chosen. They may be envis-
aged as components of vector b in the three-dimensional

parametric space. This space can be separated into regions
in each of which the appearance of bifurcation diagram is
identical. Surfaces separating these regions are governed
by the condition of vanishing of some of the eigenvalues
belonging to the first group. In the case under examination
the number of such surfaces is too large for corresponding
partitioning of the three-dimensional parametric space to
be presented graphically. However, bellow an algorithm
will be formulated which enables the construction of the
phase diagram for every particular point b of this space.

Inspecting formulas of Appendix B it is easy to notice
that the bifurcation values of parameter τ are proportional
to the square of parameter α where proportionality coef-
ficient k(b) ≡ τ/α2 depends on point b of the parametric
space. Interestingly, the above-mentioned dependence of
this coefficient on α takes place even for extremals 1, 3,
5, 6, 9 in Table 1 for which the expression of the Landau
free energy (6) is independent of parameter α. This is be-
cause of the effect of this parameter on the intensity of the
perturbations whose wave vectors together with those of
the first harmonic sets of the above-mentioned extremals
form contours of length three. Just such perturbations are
responsible for the stability loss with respect to H or B
mesophases by the mesophases which these extremals cor-
respond to.

Of particular importance is the specific feature of the
phase behavior of a heteropolymer liquid which our treat-
ment enabled to reveal. So, under the traditional approach
the secondary bifurcation corresponding to the formation
of either H or B mesophase necessarily results in the ap-
pearance of one stable and one unstable branches. In the
framework of the analysis of the trivial stability, such
a situation is the only feasible for the above-mentioned
secondary bifurcation. However, the consideration of the
non-trivial stability casts doubt on this conclusion. For
example, when τ∗

H < τ∗
B , the secondary bifurcation at

point τ = τ∗
H leads to the appearance of a pair of un-

stable branches of H-extremal. On the first of them there
is one negative eigenvalue, while on the second branch
their number is two. As for the secondary bifurcation at
point τ = τ∗

B , here the numbers of negative eigenvalues on
the first and the second branches of B-extremal are equal
to zero and unity, respectively. For heteropolymer liquids
in which reverse inequality τ∗

H > τ∗
B holds the above rea-

soning remains in force, provided B- and H-extremals are
transposed.

In regard to the extremals 1, 3, 5, 6, 9 in Table 1,
which emerge as a result of the primary bifurcation at
point τ = 0, their amplitudes are described on the bi-
furcation diagram by trivial formula A = κ

√−τ where
the dependence of coefficient κ on parameters {γi} can be
found in Table 1. It is readily shown that among these
five extremals from two to four ones certainly are saddle
extremals at all negative values of parameter τ < 0. Given
relationships between parameters {γi}, it is easy using Ta-
ble 2 to determine the extremals which necessarily will be
saddles.

It is clear from this table that in order to perform
an analysis of the global stability of a particular polymer
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Table 2. Extremals from those 1, 3, 5, 6, 9 in Table 1 which
are certain to be saddles.

γ0 − 2γ2 > 0 γ0 + 2γ2 + 2γ3 > 4γ1 L, S, Rh
γ0 + 2γ2 + 2γ3 < 4γ1 L, Rh, F2, B2

γ0 − 2γ1 > 0 2γ2 − γ0 > 4γ4 L, S, F2, B2
γ0 − 2γ2 < 0 2γ2 − γ0 < 4γ4 L, S, Rh

γ0 − 2γ1 < 0 2γ2 − γ0 > 4γ4 S, Rh, B2
2γ2 − γ0 < 4γ4 S, Rh

Fig. 2. Orgraph of the extremals presented in Table 1.

system with fixed set of values of parameters {γi}, in-
dispensable for the construction of its complete phase di-
agram, it will suffice to consider apart from H- and B-
extremals not more than three locally stable extremals.

At every fixed value of parameter τ there is a specific
set i of local minima of the free energy characterized by
their number and types. As τ changes this set transforms
at point τ = τij to other set j. Particular sequence of
such bifurcation points τij and sets a system goes through
during the evolution of parameter τ will be referred to as
bifurcation scenario. A challenging theoretical problem is
to elucidate how the bifurcation scenario of a heteropoly-
mer liquid depends on the chemical structure of its macro-
molecules.

This scenario may be conveniently interpreted in terms
of re-coloring of the vertices of some orgraph depicted in
Figure 2. To each vertex of this orgraph an extremal cor-
responds among those presented in Table 1, except for 2
and 7. This couple of extremals is ruled out from further
consideration, since they are saddles of the hypersurface
of the Landau free energy (6) at all values of parameters
{γi}. The admissible directions of the instability growth
which arises as bifurcation parameter τ decreases are as-
sociated with arcs of the orgraph shown in Figure 2 [23].
We will put its particular set of vertices colored black in
correspondence to the appropriate set i of local minima
of the Landau free energy. Hence, a bifurcation scenario
is unambiguously characterized at each given set of pa-
rameters {γi} both by the succession of colorings of an
orgraph vertices and by bifurcation values of coefficients
kij ≡ τij/α2.

4 Transient states

It is clear that the path linking some minimum on the
hypersurface of the Landau free energy with a neighboring

minimum is certain to necessarily go through a saddle
point on this hypersurface. The extremal corresponding to
this point bellow will be referred to as the transient state.
A knowledge of the value of the free energy at this saddle
point is critically important for estimating the lifetime
of the metastable state corresponding to the neighboring
minimum where the value of the free energy is larger.

Table 3 provides exact analytical expressions we man-
aged to derive for the extremals of function (6) that cor-
respond to the transient states between all locally stable
extremals among those presented in Table 1 [24]. Deriving
these expressions, we proceeded from the following consid-
erations. In the simplest case the stability loss happens as
the result of vanishing of eigenvalue λi (whose multiplic-
ity is one) of the Hess matrix (10) which eigenvector x(i)

corresponds to. This vector indicates the direction of the
instability growth in the nine-dimensional space of am-
plitudes and phase variables. The collinearity of a pair
of some eigenvectors of the Hess matrix on different ex-
tremals is the necessary condition for the possibility of the
transition between mesophases associated with these ex-
tremals. If at the point of the stability loss the eigenvalue
with multiplicity r > 1 turns into zero, the null-space of
the eigenvectors will have dimensionality r > 1 which co-
incides with the number of linearly independent eigenvec-
tors corresponding to this eigenvalue. Any direction in this
null-space is “dangerous” from the point of view of the in-
stability development. Knowing coinciding eigenvector of
the instability of two mesophases, one can make a con-
jecture about possible configuration of the transient state
dividing them.

However, more intricate situations exist when some
mesophases are characterized by an instability vector to
which a collinear one is impossible to choose up from the
set of instability vectors of all the other mesophases given
in Table 1. Such a situation takes place for H- mesophase
when eigenvalue λ4,5 vanishes (see Appendix B). In this
case the configuration (AABCC0 ) of the transient state
from H- into F2-mesophase was found to be specified
by three, A, B and C, independent values of the am-
plitude. Therefore, the transient state represents a su-
perposition of five pairs of plane waves. The first four
of them (two with amplitude A, one with amplitude B
and one with amplitude C) have zero values of the phase
variables. The remaining pair of plane waves has ampli-
tude C and values of phase variables π. Dependencies of
amplitudes A, B and C on τ exhibit the following pecu-
liarities. Firstly, at τ = τHF2 equalities A = B = AH ,
C = 0 are true, while at τ = τF2H we have B = 0,
A = C = AF2. Here AH , AF2 stand for the values of
the amplitudes of plane waves on H-extremal at point
τ = τHF2 and on F2-extremal at point τ = τF2H , respec-
tively. Secondly, in the vicinity of point τ = τHF2 ampli-
tudes A and B decrease linearly (AH − A) ∼ (τ − τHF2)
and (AH −B) ∼ (τ −τHF2), respectively, whereas the am-
plitude C grows as C ∼ √

τ − τHF2. An analogue of these
relationships in the neighborhood of point τ = τF2H are
(AF2 − A) ∼ (τF2H − τ), (AF2 − C) ∼ (τF2H − τ) and
B ∼ √

τF2H − τ . Inspection of Table 3 discloses that in
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Table 3. Characterization of the transitions between mesophases caused by the loss of their local stability.

Type Expression for kIJ ≡ τIJ/α2 Instability Trans. state Expression for amplitudes
I-J eigenvector configuration

D-B
kDB = 0,
kBD = 6

βB
,

(1 1 1 1 1 1)
(1̄ 1̄ 1̄ 1̄ 1̄ 1̄) (BBBBBB) B =

3|α(1−
√

1−τ/τ∗
B)|

βB

D-H
kDH = 0,
kHD = 3

4βH
,

(1 1 1 0 0 0)
(1̄ 1̄ 1̄ 0 0 0) (BBB000) B =

3|α(1−
√

1−τ/τ∗
H)|

4βH

B-H
kBH = − 4(8βH−βB)

(βB−4βH)2
,

kHB = − 4(6βH−βB)

(βB−4βH)2
,

(8βH > βB > 4βH)

(0 0 0 1̄ 1̄ 1̄)

(0 0 0 1 1 1)
(AAABBB)

A = 3|α|
βB−4βH

B =
√

3(τ−τHB)
2βB

H-L
kHL = − 8(γ0+γ1)

(2γ1−γ0)
2 ,

kLH = − 4γ0

(2γ1−γ0)
2 ,

(2γ1 − γ0 > 0)

(0 1̄ 1̄ 0 0 0)

(0 1 1 0 0 0)
(ABB000)

A = 2|α|γ0

(2γ1−γ0)
2

B =
√

τLH−τ
γ0+2γ1

H-F2
kHF2 = − 8(βF2+4γ1)

(β′)2 ,

kF2H = − 8βF2
(8γ1−βF2)β′ ,

β′ ≡ γ0 − 2 (γ2 + γ3) , (β′ > 0)

(0 0 0 1 1̄ 0)

(0 0 1 0 0 0)
(AABCC0)

A2 = g (τ) + h (τ) , C2 = g (τ) − h (τ)
g (τ) ≡ − τ+2γ1B2

βF2
, h (τ) ≡ 2|α|B

β′

B =
√

(τF2H−τ)(8γ1−βF2)

(16γ2
1−γ0βF2)

B-S
kBS = − 24(γ0+2γ1+2γ2+γ3)

(4γ1−γ0−2γ2+2γ3)
2 ,

kSB = − 16(γ0+2γ2)

(4γ1−γ0−2γ2+2γ3)
2 ,

(4γ1 − γ0 − 2γ2 − 2γ3 > 0)

(0 1̄ 1̄ 0 1̄ 1̄)

(0 1 1 0 1 1)
(ABBABB)

A = 4|α|
4γ1−γ0−2γ2+2γ3

B =
√

τ−τSB

γ0+4γ1+2γ2+2γ3

B-B2
kBB2 = −γ0+8γ1+2γ2

γ2
3

,

kB2B = 0,

the vicinity of bifurcation points τHF2 and τF2H the evo-
lution of the transient state H-F2 considered in the first
order in small parameter ε (proportional to the square
root of the deviation of parameter τ from its bifurcation
value) occurs along the direction specified by the insta-
bility vector. To provide an adequate description of the
transition into final state whose instability vector is non-
collinear to the analogous vector of the initial state, when
performing a bifurcation analysis in the neighborhood of
point ε = 0, one should, generally speaking, take into ac-
count the terms next to the principal term of the power
expansion in this small parameter. However, for the tran-
sition between H- and F2-mesophase in hand there is no
need for such an account, because we managed to derive
exact analytical expressions for the dependencies of am-
plitudes A, B and C on parameter τ which are valid at
arbitrary ε.

With formulas presented in Tables 1 and 3, it is easy
to find the height of potential barrier ∆F ∗ that is equal to
the difference of the free energy values in transient state
and in higher minimum. Essentially, the lifetime of the
metastable state corresponding to such a minimum de-
pends exponentially on value ∆F ∗.

5 Global stability

Since at fixed value of parameter τ several local minima
of the Landau free energy often exist, the problem is nor-
mally encountered how to select the deepest (i.e., global)
among them. The solution of this problem is of utmost

importance because just to this minimum the thermody-
namically stable mesophase corresponds. The values of the
free energy in mesophases L, S, Rh, F2 and B2 are deter-
mined according to formula (6) and Table 1 by expression

FJ = −νJτ2/4βJ (J = L,S, Rh, F2, B2) (11)

here νJ represents the number of non-vanishing ampli-
tudes in configuration (a1a2 . . . a6) of mesophase J . The
values of the free energy in mesophases H and B can be
calculated from formula

FJ =
νJ (τ∗

J )2

12βJ
G (yJ) , yJ = τ/τ∗

J (J = H, B) (12)

where function G (y) is defined by the following expression

G (y) ≡ 8 (y − 1)
(

1 +
√

1 − y
)

+ (4 − 3y) y. (13)

Noteworthy, the thermodynamic transitions between all
mesophases are the first order. Such a transition from
mesophase I into mesophase J occurs at τ = τ+

IJ when
the values of free energies of both mesophases become
equal. The transition from disordered state to some of
mesophases is, generally speaking, the first order as well. A
special case is a heteropolymer liquid whose molecules are
invariant with respect to the inversion of A and B units.
In melt of such a symmetric heteropolymer the above-
discussed transition being the second order happens al-
ways on spinodal τ = 0.

Unlike the bifurcation scenario considered in the pre-
vious section, the scenario characterizing the sequence of
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phase transitions induced by the temperature change is de-
scribed by a particular succession of thermodynamically
stable mesophases and values of coefficient k+

IJ ≡ τ+
IJ

/

α2

at which phase transitions between them take place. To
every such a scenario the specific walk corresponds on the
orgraph depicted in Figure 2. As our analysis revealed,
on the orgraph there is the only vertex, corresponding to
extremal F2, into which none of these walks can enter.
Therefore, never can the region of existence of mesophase
F2 appear in the phase diagram. Its construction in the
case under examination consists in indicating the points
on straight line τ where phase transitions happen between
globally stable states.

As already emphasized in the preceding section, the
lifetime of metastable state I in the vicinity of the point
of phase transition τ = τ+

IJ depends exponentially on the
difference ∆F ∗

L of free energy values in transient state IJ
and the state I. This difference is, obviously, proportional
to the number of monomeric units in the critical nucleus.
The proportionality coefficient in this dependence equals
∆FIJ ≡ FIJ − FI where values of FI are defined by for-
mulas (11), (12), whereas FIJ is the value of the specific
free energy in the transient state IJ obtainable from for-
mula (6) and Table 3. Since the probability for a system
to be found in metastable state exponentially decreases as
it moves away from point τ = τ+

IJ , in order to estimate the
lifetime of such a state it is enough to determine value of
∆FIJ only at point τ = τ+

IJ where, by definition, FJ = FI .
In the system in hand all possible phase transitions, in

accordance with the appearance of the orgraph pictured
in Figure 2, are divided into three types, each being de-
scribed by the individual equation for finding the locus of
the transition point. To the first type D → B and D → H
transitions belong, to the second one B → H transition
does, while all the remaining possible transitions are as-
cribed to type three.

Equation which permits calculating the point τ = τ+
DJ

of the first type equilibrium transition reads

G (y) = 0, where y = τ+
DJ/τ∗

J , (14)

here G (y) is defined by formula (13), whereas J = H
and J = B in the case of D → B and D → H transitions,
respectively. It can be readily shown that this equation has
unique solution y = 8/9. This means that as parameter τ
decreases, the homogeneous state looses its global stability
at value y = 8/9 on the binodal where the first order
phase transition occurs either into H (τ∗

H > τ∗
B), or into B

(τ∗
H < τ∗

B) mesophase.
The only representative of the second type phase tran-

sitions is B → H one which proceeds at point τ = τ+
BH

whose value is found from the solution y (x) of the follow-
ing equation

2G (y) = x3G (y/x) , where y ≡ τ+
BH/τ∗

H , x ≡ 4βH/βB.
(15)

Such a solution exists only in the interval 1 � x < 2.
It decreases monotonically with the growth of x from
y (1) ∼= 0.80 to −∞ at x → 2 vanishing at x ∼= 1.25
(see Fig. 3a). Physical interpretation of these results is

Fig. 3. Curves a and b representing solutions y (x) of equations
(15) and (16), respectively.

fairly transparent. So, within the region x < 1 D → H
transition necessarily happens, upon which the H → B
transition, as shown in Figure 2, is impossible any longer.
At x > 1 as τ increases D → B transition takes place first
of all. Then B → H transition either occurs, provided con-
dition 1 � x < 2 (i.e., γ0 < 2γ2 + 4γ3 < 3γ0 + 8γ1) holds,
or does not occur, if x > 2. Interestingly, the last phase
transition may happen both before the spinodal τ = 0
(1 � x < 1.25) and after it (1.25 < x < 2).

To the third type H → L, B → S and B → B2 phase
transitions belong. The value of parameter τ = τ+

JK at
point of each of these J → K transitions can be calculated
from the solution of equation

G (y′) = −zy′2, where y′ ≡ τ+
JK/τ∗

J (16)

at value z = zJK ≡ 3 (νKβJ/νJβK). In the last of ex-
pressions (16) index J = H, B, while index K = L, S, B2.
It is easy to show that only negative solutions y′ (z) have
a physical meaning, because any mesophase K exists ex-
clusively at τ < 0. Such a negative solution y′ (z) exists
only in the region z > 3 being there unique. In this region
it grows monotonically from −∞ at z = 3, approaching
zero at z → ∞ (see Fig. 3b). In order for the solution
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of equation (16) to correspond to the value of the phase
transition point τ = τ+

JK , the extremal K has to be lo-
cally stable at this point. For the above three transitions
belonging to the third type this necessary condition turns
out to be sufficient as well. To make sure that this is so,
let us examine individually each of these transitions.

Evidently, the fulfillment of inequality zHL > 3 (γ0 −
2γ1 < 0) is the necessary condition of the existence of
H → L transition, inasmuch as equation (16) has physi-
cally meaningful solution only within the region z > 3. On
the other hand, this condition is sufficient as well, because
at point τ = τ+

HL the fulfillment of inequality zHL > 3 co-
incides, as it is clear from Table 2, with the condition of the
local stability of extremal L. The above reasoning concern-
ing H → L transition can be fully extended to B → S tran-
sition, the condition of the existence of which will be the
fulfillment of inequality zBS > 3 (γ0−4γ1+2γ2+2γ3 < 0).
As for B → B2 transition, it conceptually differs from both
transitions considered in the foregoing. The fact is that in-
equality zBB2 > 3 indispensable for the existence of this
transition is true at any set of parameters {γj}. However,
this condition will be sufficient one only in the case of the
fulfillment of inequality γ0 − 4γ1 +2γ2 + 2γ3 > 0. Which ,
according to Table 2, specifies the region of the local sta-
bility of the B2-extremal. If reverse inequality (equivalent
to inequality zBS > 3) holds, B → B2 transition does not
happen. However, in this case B → S phase transition is
realized, since just inequality zBS > 3 specifies the region
of the extremal S local stability.

Using the above-achieved results and Figure 2, it is
possible to prove that in the framework of the treatment
employed in the present paper only six scenarios of phase
transitions are possible:

1. D → H: x < 1, zHL < 3.
2. D → H → L: x < 1, zHL > 3.
3. D → B → H: 1 < x < 2, xy (x) > y′ (zBS) , zBS >

3, zHL < 3,
or 1 < x < 2, xy (x) > y′ (zBB2) , zBS < 3, zHL < 3.

4. D → B → H → L: 1 < x < 2, xy (x) >
y′ (zBS) , zBS > 3, zHL > 3,
or 1 < x < 2, xy (x) > y′ (zBB2) , zBS < 3, zHL > 3.

5. D → B → S: 1 < x < 2, xy (x) < y′ (zBS) , zBS > 3,
or x > 2, zBS > 3.

6. D → B → B2: 1 < x < 2, xy (x)<y′ (zBS) , zBS < 3,
or x > 2, zBS < 3.

Here y (x) and y′ (zJK) are solutions of equations (15) and
(16), respectively.

6 Examples of scenarios of bifurcation and
phase transitions

In theoretical papers devoted to the investigation of mi-
crophase separation in an incompressible melt of binary
monodisperse heteropolymers, the only scenario of phase
transitions, D → B → H → L, is normally found in the
framework of the first harmonic approximation of WSL

Fig. 4. Succession of the colorings of the orgraph depicted in
Figure 2 which characterizes the bifurcation scenario inherent
to a system with the set of parameters I (17).

Fig. 5. The same as in Figure 4 but with the set of parameters
II (17).

Fig. 6. The same as in Figure 4 but with the set of parameters
III (17).

approach. However, even in this approximation other sce-
narios are conceivable whose examples are provided below.

The application of our original approach is exemplified
by consideration of three model system characterized by
the following sets of parameters {γi}

I. γ0 = γ1 = γ2 = γ3 = 1
II. γ0 = γ3 = 1, γ1 = γ2 = 0.3

III. γ0 = γ2 = 1, γ1 = 0.3, γ3 = 0.1.
(17)

Bifurcation scenario of systems (17) is given in Figures 4–6
complemented by Table 4. These figures present the se-
quence of colorings of the vertices of the orgraph shown
in Figure 2. In the second row of Table 4 the sequence is
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Table 4. Bifurcation values of parameter kIJ ≡ τIJ/α2 which correspond for systems (17) to alteration of colorings of the
orgraph, depicted in Figure 2.

System I II III

Bifurcation 1-2 2-3 3-4 4-5 5-6 6-7 1-2 2-3 3-4 4-5 1-2 2-3

kIJ kBD kHB kBH kLH kF2H kHL kBD kDB kSB kBS kHD kDH

0,28 0 −0, 8 −4 −13 −16 0,4 0 −10 −40 0,4 0

Fig. 7. Phase diagrams of three systems with values of pa-
rameters (17). Points on the straight line represent boundaries
of the regions of the thermodynamic stability of mesophases
whose names are indicated above.

Table 5. Values of parameter k+
IJ ≡ τ+

IJ/α2 and ∆F+
IJ/α4 at

points of the phase transitions presented in Figure 7.

System I II III

k+
IJ k+

DB k+
BH k+

HL k+
DB k+

BS k+
DH

0.24 −0.16 −6 0.4 −11 0.4

∆F+
IJ/α4 1.4×10−3 5.1×10−3 7.2×10−1 1.1×10−2 9.6 9.0×10−3

presented of the alteration of this orgraph colorings associ-
ated with appropriate bifurcation transitions. In the third
row of this table bifurcation parameters kIJ ≡ τIJ/α2 are
specified corresponding to these transitions whose numer-
ical values are given in the fourth row.

The scenario of the phase transitions in systems (17)
is illustrated by Figure 7 and Table 5. The second row
of this table incorporates parameters k+

IJ ≡ τ+
IJ/α2 the

numerical values of which are presented in the third row.
And, finally, in the last row there are specified differences
divided by α4 of the specific free energy ∆F ∗

IJ of transient
and initial states at point of I → J phase transition.

Since to any scenario of phase transitions some walk on
the above-mentioned orgraph unambiguously corresponds,
no system under consideration in point can undergo more
than three phase transitions over the whole range of tem-
perature change. The reason is the absence in this orgraph
of walks whose length exceeds three. The only walk of
length three is that corresponding to the traditional se-
quence of phase transitions, D → B → H → L, which is
realized, in particular, in system I (17). Phase diagrams
of other systems can have either two or one point of phase

transitions, as it is the case in systems II and III (17),
respectively.

7 Conclusion

The original approach put forward in this paper qualita-
tively differs from that traditionally used in the WSL ap-
proach to describe the phase transitions in heteropolymer
liquids. A distinctive feature of our approach consists in
invoking the mathematical apparatus of the bifurcation
analysis. This makes possible to include into considera-
tion the metastable states, that is of utmost importance in
the investigation of the thermodynamic behavior of poly-
mer systems. The values of temperature at which these
states loose their local stability separate the regions where
the phase transition proceeds by the spinodal decomposi-
tion mechanism and by the nucleation mechanism. Under
the traditional approach the problem of determining the
boundaries of these regions is not normally attacked.

One more advantage of our treatment is the possibil-
ity to calculate the height of the thermodynamic barrier
which controls the probability of the transition from a
metastable state and stable one. This permits evaluating
the characteristic scale of the lifetime of the first of them.

Although in the main body of the paper we restricted
the consideration to mesophases whose wave vectors, in-
volved in their first harmonic sets, are aligned along the
edges of the regular tetrahedron, the approach introduced
can be easily extended to figures other than tetrahedron.
So, if a cube is such a figure, the full set of single-amplitude
extremals of the Landau free energy will comprise along
with L and S extremals also Cubic (C) extremal (see Ap-
pendix C). Essentially, S-extremal always turns out to be
unstable with respect to arbitrary perturbations whose
wave vectors are aligned along the cube edges. This means
that the S-mesophase involved in the orgraph depicted in
Figure 2 does not exist in reality.

In order to perform a correct bifurcation and phase
analysis on the set composed of all extremals of orgraph
(Fig. 2) complemented by C-extremal, it is necessary to
consider a set of nine wave vectors of identical length.
This set consists of six vectors aligned along the edges of
the regular tetrahedron presented in Figure 1 and three
vectors which are perpendicular, respectively, to pairs
of vectors 1 and 4, 2 and 5, 3 and 6 of this tetrahe-
dron. In such a problem the Landau free energy in the
first harmonic approximation will depend on nine inde-
pendent amplitudes {ai} and on phenomenological coeffi-
cients {γi} whose number is larger than four. Finding of
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single-amplitude extremals of the Landau free energy and
the analysis of their thermodynamical stability in such
a model constitutes a far more complicated problem as
compared with that addressed in the present paper.

The approach put forward in the present work is con-
fronted by serious mathematical difficulties under the ex-
tension of the set of candidate mesophases, specifically
when the mesophase having gyroid spatial symmetry of
the distribution of densities of monomeric units is added.
These difficulties are due to a large number of independent
amplitudes of the order parameter of the gyroid symme-
try. In this case it is advisable to supplement our approach
with different numerical methods of the solution of sets of
nonlinear algebraic equations. An example of such a con-
sideration of the gyroid mesophase was provided [13] in
particular case when the vertex functions are independent
of angles.

The authors gratefully acknowledge the financial support the
work by CRDF (grant RC-2-2398-MO-02).

Appendix A

The set of nine equations for finding extremals of function
(6) has the following appearance
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∂F/∂a1 = τa1 − 2α (a2a3 cos t123 + a5a6 cos t1)
+γ0a

3
1 + 2γ1a1

(

a2
2 + a2

3 + a2
5 + a2

6

)

+2γ2a1a
2
4 + 2γ3a4 (a2a5 cos t12 + a3a6 cos t13) = 0,

∂F/∂a2 = τa2 − 2α (a1a3 cos t123 + a4a6 cos t2)
+γ0a

3
2 + 2γ1a2

(

a2
1 + a2

3 + a2
4 + a2

6

)

+2γ2a2a
2
5 + 2γ3a5 (a1a4 cos t12 + a3a6 cos t23) = 0,

∂F/∂a3 = τa3 − 2α (a1a2 cos t123 + a4a5 cos t3)
+γ0a

3
3 + 2γ1a3

(

a2
1 + a2

2 + a2
4 + a2

5

)

+2γ2a3a
2
6 + 2γ3a6 (a1a4 cos t13 + a2a5 cos t23) = 0,

∂F/∂a4 = τa4 − 2α (a2a6 cos t2 + a5a3 cos t3)
+γ0a

3
4 + 2γ1a4

(

a2
2 + a2

3 + a2
5 + a2

6

)

+2γ2a4a
2
1 + 2γ3a1 (a2a5 cos t12 + a3a6 cos t13) = 0,

∂F/∂a5 = τa5 − 2α (a1a6 cos t1 + a4a3 cos t3)+
γ0a

3
5 + 2γ1a5

(

a2
1 + a2

3 + a2
4 + a2

6

)

+2γ2a5a
2
2 + 2γ3a2 (a1a4 cos t12

+a3a6 cos t23) = 0,
∂F/∂a6 = τa6 − 2α (a1a5 cos t1 + a4a2 cos t2)

+γ0a
3
6 + 2γ1a6

(

a2
1 + a2

2 + a2
4 + a2

5

)

+2γ2a6a
2
3 + 2γ3a3 (a1a4 cos t13 + a2a5 cos t23) = 0,

∂F/∂t1 = 2αa1 (a2a3 sin t123 + a5a6 sin t1)
−2γ3a1a4 (a2a5 sin t12 + a3a6 sin t13) = 0,
∂F/∂t2 = 2αa2 (a1a3 sin t123 + a4a6 sin t2)
−2γ3a2a5 (a1a4 sin t12 + a3a6 sin t23) = 0,
∂F/∂t3 = 2αa3 (a1a2 sin t123 + a4a5 sin t3)
−2γ3a3a6 (a1a4 sin t13 + a2a5 sin t23) = 0,

(A.1)
where tij , t123 are defined by formulas (9).

The number of unknowns in set of equations (A.1)
for each single-amplitude configuration (a1a2 . . . a6) is re-
duced to four which are the amplitude A and three phase
variables t1, t2, t3. Note, set (A.1) is consistent not for all
single-amplitude configurations, but only for those pre-
sented in Table 1.

Appendix B

Bellow both blocks of the Hess matrix (10) are presented
along with the complete spectrum of its eigenvalues on all
extremals given in Table 1.

0. Disorder (D).

Ha =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

S0 0 0 0 0 0
0 S0 0 0 0 0
0 0 S0 0 0 0
0 0 0 S0 0 0
0 0 0 0 S0 0
0 0 0 0 0 S0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Ht =

⎛

⎝

0 0 0
0 0 0
0 0 0

⎞

⎠ (B.1)

S0 ≡ τ
λ1,...,6 = S0, λ7,8,9 = 0

1. Lamellar (L).

Ha =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

S1 0 0 0 0 0
0 T1 V1 0 0 0
0 V1 T1 0 0 0
0 0 0 U1 0 0
0 0 0 0 T1 V1

0 0 0 0 V1 T1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Ht =

⎛

⎝

0 0 0
0 0 0
0 0 0

⎞

⎠ (B.2)

S1≡2γ0A
2, T1≡(2γ1−γ0)A2, U1≡(2γ2−γ0) A2, V1≡−2αA

λ1 = S1, λ2,3 = T1+V1, λ4,5 = T1−V1, λ6 = U1, λ7,8,9 = 0.

2. Rhombic (R).

Ha =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

S2 V2 0 0 0 0
V2 S2 0 0 0 0
0 0 T2 0 0 0
0 0 0 U2 0 0
0 0 0 0 U2 0
0 0 0 0 0 T2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Ht =

⎛

⎝

0 0 0
0 0 0
0 0 0

⎞

⎠ (B.3)

S2≡2γ0A
2, T2≡(2γ1−γ0)A2, U2≡(2γ2−γ0) A2, V2≡4γ1A

2

λ1 = S2 − V2, λ2 = S2+V2, λ3,4 = T2, λ5,6 = U2, λ7,8,9 = 0.

3. Square (S).

Ha =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

S3 0 0 U3 0 0
0 T3 V3 0 X3 V3

0 V3 T3 0 V3 X3

U3 0 0 S3 0 0
0 X3 V3 0 T3 V3

0 V3 X3 0 V3 T3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Ht =

⎛

⎝

0 0 0
0 0 0
0 0 0

⎞

⎠ (B.4)

S3 ≡2γ0A
2, T3≡(4γ1−γ0−2γ2)A2, U3≡4γ2A

2,
V3 ≡ −2αA, X3≡2γ3A

2

λ1 = S3 − U3, λ2 = S3 + U3, λ3,4 = T3 − X3,
λ5 = T3 + X3 − 2V3, λ6 = T3 + X3 + 2V3, λ7,8,9 = 0.

4. Hexagonal (H).

Ha =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

S4 U4 U4 0 0 0
U4 S4 U4 0 0 0
U4 U4 S4 0 0 0
0 0 0 T4 V4 V4

0 0 0 V4 T4 V4

0 0 0 V4 V4 T4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Ht =

⎛

⎝

0 0 0
0 0 0
0 0 0

⎞

⎠ (B.5)



S.I. Kuchanov et al.: On thermodynamic stability of heteropolymer mesophases formed... 81

S4 ≡ 2γ0A
2+2αA, T4 ≡ (2γ2−γ0)A2 + 2αA,

U4 ≡ 4γ1A
2 − 2αA, V4 ≡ 2γ3A

2 − 2αA
λ1,2 =S4−U4, λ3 =S4+2U4, λ4,5 =T4−V4,
λ6 =T4+2V4, λ7,8,9 =0.

5. Rhombohedric (Rh).

Ha =

⎛

⎜

⎜

⎜
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⎜

⎝

T5 V5 V5 0 0 0
V5 T5 V5 0 0 0
V5 V5 T5 0 0 0
0 0 0 S5 U5 U5

0 0 0 U5 S5 U5

0 0 0 U5 U5 S5

⎞
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⎟

⎟
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⎝
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0 0 0
0 0 0

⎞

⎠ (B.6)

S5≡2γ0A
2, T5≡(2γ2 − γ0)A2, U5≡4γ1A

2, V5≡−2γ3A
2

λ1,2 = S5 − U5, λ3 = S5 + 2U5, λ4,5 = T5 − V5,
λ6 = T5 + 2V5, λ7,8,9 = 0.

6. Deformed FCC2 (F2).

Ha =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

S6 U6 V6 X6 U6 −V6

U6 S6 V6 U6 X6 V6

V6 V6 T6 −V6 −V6 0
X6 U6 −V6 S6 U6 V6

U6 X6 −V6 U6 S6 −V6

−V6 V6 0 V6 −V6 T6

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Ht =

⎛

⎝

0 0 0
0 0 0
0 0 0

⎞

⎠

(B.7)
S6≡2 (γ0 + γ3) A2, T6≡(4γ1 − γ0 − 2γ2 + 2γ3)A2,
U6≡2 (2γ1 − γ3)A2, X6≡2 (2γ2 − γ3)A2, V6 ≡ 2αA
λ1 =S6 + X6 − 2U6, λ2 = S6 + X6 + 2U6,

λ3,4=
[

(S6 + T6 − X6) −
√

(S6 − T6 − X6)
2 + 16 V 2

6

]

/2,

λ5,6=
[

(S6 + T6 − X6) +
√

(S6 − T6 − X6)
2 + 16 V 2

6

]

/2,

λ7,8,9 = 0.

7. Deformed FCC3 (F3).

Ha =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

S7 U7 0 X7 U7 0
U7 S7 0 U7 X7 0
0 0 T7 0 0 V7

X7 U7 0 S7 U7 0
U7 X7 0 U7 S7 0
0 0 V7 0 0 T7

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Ht =

⎛

⎝

0 0 0
0 0 0
0 0 0

⎞

⎠ (B.8)

S7 ≡ 2 (γ0 − γ3)A2, T7 ≡ (4γ1 − γ0 − 2γ2 − 2γ3)A2,
U7 ≡ 2 (2γ1 + γ3)A2, X7 ≡ 2 (2γ2 + γ3)A2, V7 ≡ 4γ3A

2

λ1,2 =S7 − X7, λ3 =S7+X7−2U7, λ4 = S7 + X7 + 2U7,
λ5 = T7 − V7, λ6 = T7 + V7, λ7,8,9 = 0.

8. BCC (B).

Ha =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

S8 T8 T8 U8 T8 T8

T8 S8 T8 T8 U8 T8

T8 T8 S8 T8 T8 U8

U8 T8 T8 S8 T8 T8

T8 U8 T8 T8 S8 T8

T8 T8 U8 T8 T8 S8

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Ht =

⎛

⎝

2Λ8 Λ8 Λ8

Λ8 2Λ8 Λ8

Λ8 Λ8 2Λ8

⎞

⎠

(B.9)
S8 ≡ 2 (γ0 − 2γ3) A2 + 4αA, T8 ≡ 2 (2γ1 + γ3)A2 − 2αA
U8 ≡ 4 (γ2 + γ3)A2, Λ8 ≡ 2 (α − γ3A)A3

λ1,2,3 = S8 − U8, λ4,5 = S8 − 2T8 + U8,
λ6 = S8 + 4T8 + U8, λ7,8 = Λ8, λ9 = 4Λ8.

Table C1. Complete set of all single-amplitude extremals of
the Landau free energy (C1) and the spectrum of the Hess
matrix on these extremals.

N◦ Extremal Abbr. (a1a2a3) Expression for Eigenvalues
amplitude A

0 Disorder D (000) − λ1,2,3 =τ

1 Lamellar L (A00)

√−τ/βL,

βL ≡ γ0

λ1 =2γ0A2,
λ2,3 =(2γ2 − γ0)A2

2 quare S (AA0)

√−τ/βS ,
βS ≡ γ0 + 2γ2

λ1 =(γ0 + 2γ2) A2,
λ2 =(γ0 − 2γ2) A2,
λ3 =(2γ2 − γ0) A2

3 Cubic C (AAA)

√−τ/βC ,
βC ≡ γ0 + 4γ2

λ1 =(γ0 + 4γ2)A2,
λ2,3 =(γ0 − 2γ2)A2

9. BCC2 (B2).

Ha =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

S9 T9 T9 U9 T9 T9

T9 S9 T9 T9 U9 T9

T9 T9 S9 T9 T9 U9

U9 T9 T9 S9 T9 T9

T9 U9 T9 T9 S9 T9

T9 T9 U9 T9 T9 S9

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Ht =

⎛

⎝

2Λ9 Λ9 Λ9

Λ9 2Λ9 Λ9

Λ9 Λ9 2Λ9

⎞

⎠

(B.10)
S9 ≡ 2 (γ0 + 2γ3)A2, T9 ≡ 2 (2γ1 − γ3)A2,
U9 ≡ 4 (γ2 − γ3) A2, Λ9 ≡ 2γ4A

4

λ1,2,3 = S9 − U9, λ4,5 = S9 − 2T9 + U9,
λ6 = S9 + 4T9 + U9, λ7,8 = Λ9, λ9 = 4Λ9.

Appendix C

Here we will examine mesophase whose wave vectors {qi}
of the first harmonic set are aligned along the edges of
a cube. Because a cube, as distinct from a tetrahedron,
has not contours of length three and length four contours
distinct from the square, the function of the Landau free
energy neither contain a cubic term nor depends on phases
{ϕi} of plane waves:

F =
τ

2

3
∑

i=1

a2
i +

γ0

4

3
∑

i=1

a4
i + γ2

(

a2
1a

2
2 + a2

1a
2
3 + a2

2a
2
3

)

(B.11)
here ai (i = 1, 2, 3) are amplitudes of three pairs of
harmonics with mutually perpendicular wave vectors,
whereas the sense of the other coefficients is just the same
as in formula (6).

Having performed the algebraic operations with the
free energy (C1) analogous to those made in the forego-
ing with expansion (6), we obtained Table C1 presenting
an information identical to that given in Table 1 and Ap-
pendix B.

In accordance with Table C1, the only state existing
in the region τ > 0 is disordered one. In this region it
is locally stable, becoming unstable at τ = 0 where two
extremals, L and C, appear. One of them is the mini-
mum, while the other is the saddle of the free energy (C1).
Particularly, L-extremal will be locally stable or unstable,
provided 2γ2 − γ0 > 0 or 2γ2 − γ0 < 0, respectively. Con-
cerning S-extremal, it will not correspond at any set of
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parameters γ0, γ2 to any mesophase. This is because one
of eigenvalues, λ2 or λ3, is always negative as it follows
from Table C1.
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